
Chapter 5

Learning More About Neuralyst

Neural networks are really very simple in concept. However, like their
biological counterparts, this simplicity is the foundation for highly
complex behavior and sophisticated capabilities.

In chapter 4 the basic capabilities and operation of Neuralyst were
discussed. This chapter focuses on several additional facets of
Neuralyst and neural network behavior. The examples in this chapter
illustrate these points as well as demonstrating a broad, though by
no means complete, range of possible applications. At the start of each
section, load the example indicated and explore it while reading the
discussion. But don’t stop there, experiment and see what happens!

The first six examples are based on idealized scenarios (much like
�
����	
�� {�������}) with fairly simple rules of behavior. This has
been done to allow the principles of behavior of neural networks to be
demonstrated with fairly small data sets. In general, real data sets
will be “noisier”. That is, they will not have values that conform
perfectly to a hidden model; instead the values will tend to vary
around some “true” value with such variations being small to large
depending on the circumstances. In order for neural networks to
perceive the structure that may exist underlying such variations,
more data must generally be presented and more time be spent in
training.

In the next two examples, we will depart from the idealized situations
and move on to real world data. Both of these will deal with
investment analysis. The first is based on fundamental analysis, that
is the forecasting of a stock or commodity’s future price movements
from data relating to a company’s revenues, earnings, debt, equity,

 39

 October 17, 1994

rates of returns, dividends, and so on. The second is based on technical
analysis, that is the prediction of a stock or commodity’s future price
movements from past price movements. Fundamental analysis is
generally considered a long-term approach, with forecasts ranging
from many months to a few years. Technical analysis is generally
considered a short-term approach, with predictions ranging from a
few minutes to many weeks.

Finally, the last example provides a demonstration of Neuralyst’s
two-dimensional analysis and pattern matching capabilities through
the recognition of patterns and shapes. Neuralyst’s multi-dimensional
analysis capabilities can be applied to a variety of applications,
including: image processing, character recognition, and so on.

At the conclusion of the discussion and examples, you will have a much
better understanding of the capabilities and limitations of neural
networks and how to go about preparing a problem for Neuralyst to
analyze.

5.1 Parity Generator — PARITY.XLS {Parity}

������	
�� {������} contains a slightly more sophisticated example of
a computer logic operation than shown in the first Neuralyst example,
����	
�� {�����}. Like that example, ������	
�� {������} works with
the binary representation, 0’s and 1’s, of computer data and is a key
function in computer operations.

������	
�� {������} demonstrates the operation of parity generation
for computer data. You may be aware that many computers, including
PC’s and Macintosh’s, use the parity check operation to verify data in
computer memory (you may have seen the message “������ �!��"”
followed by a hung computer when the check fails on a PC).

Remember that computer data is stored in groups of eight bits, known
as a byte. For each byte, the computer’s parity circuits count the
number of 1’s present in the byte. If the count is odd, then there is odd
parity; if the count is even, then there is even parity. When the byte
is written, the parity is saved in a ninth bit, known as the parity bit.
When the byte is read, the parity of the byte is checked against the

40 5.1 Parity Generator — PARITY.XLS {Parity}

 October 17, 1994

previously saved parity bit. If there has been no change while the data
resided in memory, then the parity as read will be the same as the
parity when written. If there is a difference, then one of the bits must
have changed (a 0 changing to 1 or a 1 changing to 0 will change the
number of 1’s and thereby disturb the parity) and the data has been
corrupted. When this occurs, the computer stops since it is safer to
stop operations than to try and continue with bad data that may result
in additional problems.

In the ���������� {������} example, there are only four bits
(sometimes known as a nibble) of input, rather than the eight bits
present in a full byte. These four bits can represent any number from
0 to 15 and those are the values listed in the example. (If all eight bits
had been used, the example would range from 0 to 255 — too many
data lines for a simple demonstration.)

There are two Target columns, indicating the parity of the nibble, even
or odd (zero 1’s being counted as even). There are also two Output
columns reserved for the neural network results. To run this example:

1. Init Working Area — starting at N1

2. Set Rows — 6 through 21, 1 Row/Pattern, 1 Row/Shift

3. Add Input Columns — C, D, E, and F

4. Add Target Columns — H and I

5. Add Output Columns — K and L

6. Set Network Size — 3 Layers, 8 Hidden Neurons

7. Set Network Parameters — Training Tolerance to 0.2,
 Epochs per Update to 20

[If the steps described in this “short” form are not clear to you, please
review Chapter 4, which goes through the entire process of configuring
a network in great detail.]

With this configuration, you can start training. While this problem is
training, pay particular attention to the RMS Error value. Normally,
successful training is indicated by a steady decrease in the RMS Error
value. If nothing seems to be happening after a while, try stopping the
training and use the Plot Training Error command to look at the

5.1 Parity Generator — PARITY.XLS {Parity} 41

 February 21, 1995

training progress. Resume training and look again after a while. You
may notice that there sometimes periods when the error value doesn’t
seem to make much progress (it may even lose ground for a bit) and
then there are other periods when the error value is reduced at a
steady rate or even jumps downward. After some time Neuralyst will
stop and the Output columns will match the Target columns;
Neuralyst has learned to generate the parity of any four bit value!

As it turns out, the data in this problem has a characteristic that is
particularly hard for neural networks. That is, very similar inputs
lead to very different outputs. For every value in this example, there
is another value that is different in only one input bit, yet has the
opposite output value! Despite this, the neural network was able to
learn the data. Still, this kind of characteristic in the input data can
lead to some long training sessions if the problem data, training
parameters, or network size are poorly set.

Even worse than data that is structured like this is contradictory data.
That is data that has two or more input sets that match while they
have very different outputs; for example, having the binary
representation of 2 be even parity and later on having another
instance where the binary representation of 2 is now odd parity. Such
contradictions must be removed as the neural network generally
cannot resolve these unless the error tolerance is set so loosely that
the outputs are often useless.

Now, let’s go back to the behavior we mentioned. Those periods, when
error reduction seemed to make little progress, are known as
learning plateaus. When this phenomenon occurs, it is generally
believed that the neural network is undergoing a generalization
process and developing internal representations of relevant
characteristics of the data. In fact when these plateaus occur, the
neural network is probably learning the most, even though the error
value is changing the least!

Conversely, when the error value is making rapid progress in
reduction, this generally means that the neurons have already sorted
themselves out and the corrections are being applied with maximum
effect to each neuron.

Sometimes it takes multiple plateaus, wherein new or additional
distinctions or generalizations are made each time, followed by

42 5.1 Parity Generator — PARITY.XLS {Parity}

 October 17, 1994

another phase of rapid error reduction, before the neural network is
able to complete its learning.

Watch for this kind of behavior. This will help you in understanding
what is happening with the neural network and may give an
indication of whether the network has been properly sized for the
problem.

To see what happens with marginally sized networks, rerun the
problem by giving the Set Network Size command again. This time,
set 3 layers and 4 hidden neurons. (You will be warned that this will
cause any learning done so far to be forgotten; click on OK.) Then start
training. What happens? Repeat this a few times. You will find that
sometimes the neural network trains properly and other times it
seems to reach a permanent plateau at some point, with Neuralyst
continuing to run since it is not able to achieve the required error
tolerance. There exists a solution for 4 neurons, but the neural
network is not always able to find the solution!

The neural network training process can be thought of as an
exploration of the weight space, all the different possible combinations
of weight values, until a weight set is found that produces the desired
targets. For this particular problem, with this particular neural
network configuration, there exists local minima in the weight space.
These are points in the weight space that “trap” the neural network;
the backpropagation algorithm not being able to move out of that
region to find the correct weight set. When local minima exist, one
solution is to try increasing the number of neurons until the neural
network is able to train consistently.

Another experiment to try is to change one or more lines of data so
that contradictory cases are presented. (Anytime you change input or
target data values, you must give the Reload Network command so
that Neuralyst is aware that there have been changes and that it must
pick them up.) Also, try different settings of the Training Parameters
and Network Size on this problem, with and without contradictory
data. Observe the learning behavior in each case.

5.1 Parity Generator — PARITY.XLS {Parity} 43

 February 21, 1995

Important Points:

Neural networks have a difficult time learning when inputs
having small distinctions between them require outputs with
large distinctions between them.

Neural networks cannot learn properly from contradictory data.

Neural networks often experience learning plateaus; these are
probably phases of neural network development during which
distinctions and generalizations are made.

Neural networks must have sufficient network capacity (size) to
learn.

5.2 Paper-Rock-Scissors Game — PAPER.XLS {Paper Game}

�����	
�� {����� ��#�} contains an example that is actually
structurally very similar to ������	
�� {������}. Like that example,
�����	
�� {����� ��#�} works with the representations
<PAPER, ROCK, SCISSORS> and <BONNIE, TIE, CHRIS> of possible input
values and outcomes. As with ������	
�� {������}, the goal is to learn
the rules of the game, and the rules define distinct and sometimes
opposite outcomes for various changes in inputs.

Note that <PAPER, ROCK, SCISSORS> and <BONNIE, TIE, CHRIS> are
ternary, that is three-valued, inputs and outputs. This example
demonstrates two things, the symbolic capabilities of Neuralyst and
the additional multi-valued capabilities of Neuralyst.

There are two Input columns that are set to the three possible choices
of the two players Bonnie and Chris, that is Paper, Rock, or Scissors.
There is a Target columns indicating who wins, or if it was a tie. There
are also a matching Output columns reserved for the neural network
results. To run this example:

1. Init Working Area — starting at J1

2. Set Rows — 6 through 15, 1 Row/Pattern, 1 Row/Shift

3. Add Input Columns — A, and B

44 5.2 Paper-Rock-Scissors Game — PAPER.XLS {Paper Game}

 October 17, 1994

4. Add Target Columns — D

5. Add Output Columns — F

6. Set Mode Flag Column — H

7. Set Mode Rows — 15 Set Symbol Row

8. Set Network Size — 3 Layers, 8 Hidden Neurons

9. Set Network Parameters — Training Tolerance to 0.2,
 Epochs per Update to 20

With this configuration, you can start training. After some time
Neuralyst will stop and the Output column will match the Target
column; Neuralyst has learned the rules of the Paper-Rock-Scissors
game!

The comments and discussion for the ���������� {������} example are
also relevant here and you can make many of the same experiments
to learn more about how neural networks behave with different kinds
of data.

Important Points:

Using symbolic representations provides a more natural way to
express certain types of problems.

Neural networks can deal with a variety of multi-valued inputs
and outputs.

5.3 Sine Wave — SINE.XLS {Sine}

�������� {����} contains an example of how Neuralyst can match and
predict values for a complex mathematical function with just a few
data points. In contrast to the computer logic operation that was
shown in the ���������� {������} example, �������� {����} uses
continuous real numbers rather than the binary representation, 0’s
and 1’s, of computer data.

�������� {����} demonstrates the operation of interpolation on
mathematical data. Many complex operations can be approximated

5.3 Sine Wave — SINE.XLS {Sine} 45

 February 21, 1995

by a mathematical function; for a given input value, there is a
corresponding output value. For real world behavior, it is common to
have a few sampled or measured values of the function, but not a
complete description or every value of the function. From just a few
samples, Neuralyst can often interpolate the values of the function
that were not previously known.

The sine function is a familiar mathematical function from
high-school trigonometry. It is an important function because it is
used in every area of science and engineering. It is an interesting
function because it is known as a transcendental function.
Transcendental functions are harder to describe or generate than
most functions that are familiar from high-school algebra. In
particular, the values of the sine function are normally derived by
computing an infinite series of terms. The input to a sine function is
any real value, though in the example training is limited to 0 to 6.28,
or 2π, and the output is any real value from -1 to 1.

In the �������� {����} example, there is only one Input and one Target
column. There is also a corresponding Output column to match the
Target column. To run this example:

1. Init Working Area — starting at L1

2. Set Rows — 5 through 140, 1 Row/Pattern, 1 Row/Shift

3. Add Input Columns — A

4. Add Target Columns — B

5. Add Output Columns — C

6. Set Mode Flag Column — D

7. Set Network Size — 3 Layers, 3 Hidden Neurons

8. Set Network Parameters — Momentum to 0,
 Training Tolerance to 0.04,
 Epochs per Update to 50

With this configuration, you can start training. After a few minutes
Neuralyst will be done training. In the example, some well-spaced

46 5.3 Sine Wave — SINE.XLS {Sine}

 February 21, 1995

samples for a single cycle of a sine wave are selected and used for
training. The remaining points are used for testing and plotted
against an exact sine wave for comparison. After training is complete
do a Run/Predict to fill in the previously unknown points. Look at the
resulting comparison chart. Neuralyst has generalized the shape of a
sine wave from just a few sample points!

The interpolation is off by only a few percent at the worst points and
at many points is almost exact. The function can be made more exact
with more training time, more neurons or more data points used for
training. More training time allows the neural network more time to
adjust its weights to a better solution. More neurons allows the neural
network more capacity to develop a model of the sine wave. More data
points gives the neural network more information to constrain the
approximation of the sine wave at those points that are changing
rapidly and are far away from an input training case. Try
experimenting with which of the three variations is most successful
in generating a more exact interpolation. Also observe that there is a
limit to how exact the neural network can be.

In addition to the above experiments, Neuralyst allows you to control
two parameters, Calculation Method and Scaling Margin in the
Set Enhanced Parameters dialog box, which can also affect speed
of training, precision and accuracy. Try training with
Calculation Method set to Floating Point versus the default
Fixed Point method. Also try adjusting the Scaling Margin from 10%
to 50%. While adjusting those two parameters, try tightening
Training Tolerance to 0.03, 0.02 ore even 0.01 (that is, 3%, 2% or
even 1%).

Important Points:

Neural networks can approximate and interpolate continuously
valued functions with relatively few training points.

Despite the capabilities available with relatively few training
cases, more training cases will generally provide better training.

The choice of Calculation Method can affect the training of certain
types of problems.

5.3 Sine Wave — SINE.XLS {Sine} 47

 October 17, 1994

The setting of Scaling Margin can also affect the training of
certain types of problems.

5.4 Criminal Mugbook — MUGBOOK.XLS {Mug Book}

So far there have been three examples, ����	
�� {�����},
������	
�� {������} and �����	
�� {����� ��#�}, which have
demonstrated a neural network’s capabilities to learn and reproduce
rules from examples of those rules and two examples,
�
����	
�� {�
����} and ����	
�� {����} which have demonstrated
a neural network’s capabilities to generalize and predict from known
facts. ���%"	
�� {�&� %��'} will demonstrate an example of how
neural networks can also be used for pattern matching or as an
associative memory.

You are probably familiar with the concept of a mugbook, a book of
photos used by the police to help witnesses match the physical
characteristics of known criminals against the features of a suspect
the witness has seen. In some cases, there are problems in the
identification process since the witness is not completely sure of the
match due to the uncertainty of their memory, poor visibility at the
time of the crime or changes in outward characteristics, for example,
weight gain, shorter hair length or deliberate disguise.

���%"	
�� {�&� %��'} is a simplified example of a mugbook, based
on four physical characteristics: sex, age, coloring, and weight of eight
known criminals in Midtown, U.S.A.. Most of these characteristics
have been converted to a symbolic value, using the translation shown
under each column of the worksheet. For example, age has been
broken into decades, coloring has been segmented into three
groupings: light, medium, and dark, and so on. Each of the eight
criminals has also been assigned an ID number from 1 to 8.

The Target and Output columns are set up as eight separate
indicators, each one representing a different ID. A 1 under an ID
indicates that the criminal with that ID is completely identified, a 0
under an ID indicates that criminal is completely rejected. For a solid
ID, all indicators should be 0 except for one that contains 1. There are

48 5.4 Criminal Mugbook — MUGBOOK.XLS {Mug Book}

 October 17, 1994

two reasons why the outputs have been organized in this fashion. Let’s
discuss these for a moment.

First, while neural networks can make fine distinctions, there is a
limit to the number of distinctions, that is different output values,
that a single neuron can meaningfully take on. This can result in
self-deception if you are not careful. You can train the neural network
to produce the actual output values to match the target values (within
the Training Tolerance), no matter how fine the distinction, and so
believe that the neural network has made these distinctions. But
when the neural network is run, these distinctions will not be
successfully reproduced.

There is no hard rule as to how many distinctions can be made
successfully by an output, but numbers beyond 4 to 8 are generally
difficult. In this case, with 8 ID’s to match, we have established a
separate output neuron for each ID.

The second reason anticipates the conclusion of the demonstration to
a certain extent. Once the network has been trained on the known
criminals, we will present the characteristics of an unknown to try
and match against the known ones. The use of separate outputs for
each ID allows the neural network to use the full output range to
indicate the quality of the match for the known characteristics of each
ID against the characteristics of the unknown person.

To clarify this some more, if an unknown had some of the
characteristics of ID 3 and some of the characteristics of ID 5, the only
way a single output could express this would be by presenting 4. You
would have no way of distinguishing this output from an actual match
with ID 4 or partial matches between two or more ID’s that
averaged 4. With separate outputs, the outputs for ID 3 and ID 5 could
each present a fractional value, indicating a partial match, without
any confusion.

To run this example:

1. Init Working Area — starting at AC1

2. Set Rows — 9 through 18, 1 Row/Pattern, 1 Row/Shift

3. Add Input Columns — D, E, F, and G

5.4 Criminal Mugbook — MUGBOOK.XLS {Mug Book} 49

 October 17, 1994

4. Add Target Columns — I through P

5. Add Output Columns — R through Y

6. Set Mode Flag Column — AA

7. Set Mode Rows — 18, Set Symbol Row

8. Set Network Size — 3 Layers, 6 Hidden Neurons

9. Set Network Parameters — Training Tolerance to 0.2,
 Epochs per Update to 20

With this configuration, you can start training. After a short time
Neuralyst will be done. Neuralyst has learned the distinguishing
characteristics of the eight known criminals! Any suspect with exactly
the same characteristics as one of these known criminals will
immediately produce a match. This capability is similar to the rule
reproduction capability already demonstrated before.

However, this is somewhat more powerful than may be obvious from
this simplified example. The reason is that this capability can be
extended to hundreds of characteristics and thousands of criminals
(or any other search objects). This is the same function performed by
conventional computer databases. However, computer designers
know that searching and matching in large databases are among the
most time consuming database operations. On the other hand, a
neural network trained to the same data as a large database could
“retrieve” a match with just one processing operation!

A more sophisticated capability than this will soon be apparent. Select
Run/Predict with Network from the Neural menu to run the
network. The characteristics of Mr. X are processed and the eight
outputs in that row now have fractional values in them. These
fractional values represent the neural network’s assessment of how
closely Mr. X matches characteristics of the known criminals. The
neural network is able to generate indications for the closest matches
even though it didn’t find an exact match!

The strongest outputs are likely to be for ID 5 and ID 7, with other
outputs perhaps showing a response. While there is some information
in the relative values of the matches, these values should not be taken

50 5.4 Criminal Mugbook — MUGBOOK.XLS {Mug Book}

 October 17, 1994

at first inspection as exact measures of closeness or probability. There
are three reasons for this.

First, remember that the Training Tolerance was set to 0.2 or 20% of
the output range, thus we can’t expect predictions to 5% when we
trained to tolerances of 20%. However, there is a danger to training
too strictly. It is possible that a neural network tries so hard to match
the exact values in training that it loses its generalizations. This is
called overtraining. This is particularly likely to occur when there are
too many hidden layer neurons, too few training samples and too
much training time. In this case, what happens is that the neural
network has so much capacity in relation to the data it must learn,
that it can afford to match the outputs rather than to generalize. In
essence, it is easier for the neural network to build an internal “crib
sheet” rather than understand the structure of the data!

Second, we don’t know exactly what characteristics the neural
network has determined are relevant (this is particularly important
with small sample sets, as in these examples, where there will be
fewer or no samples to contradict bad generalizations) and there is
often no way to find out without experimenting with the neural
network. Theoretically it should be possible to understand the model
developed by the neural network through a detailed examination and
understanding of the weights, but in practice these values and
relationships are often too complex for this to be attempted.

Third, for complex systems, the weights that a neural network uses
to begin training (which are randomly assigned with each new
configuration) can determine which one of a few (or many) possible
solutions is actually found. This is why rerunning some of these
problems with a new set of weights may result in slightly different
solutions. The fact that the results are sometimes slightly different
doesn’t mean that the neural net is giving incorrect answers. Instead,
it means that the data presented to the neural network admits of more
than one solution.

Having considered these limitations, in the context of this example
and with our current understanding of this neural network’s behavior,
it is best to say that the neural network considers ID 5 and ID 7 to be
strong candidates, while the other ID’s with weaker outputs are
weaker candidates, without placing too much emphasis on exactly

5.4 Criminal Mugbook — MUGBOOK.XLS {Mug Book} 51

 October 17, 1994

how much stronger or weaker these candidates are with respect to
each other.

However, you can experiment with this neural network’s behavior.
When you have learned enough, perhaps you could say more. Try
decreasing the Training Tolerance by steps of 0.05 from 0.4 to 0.1,
training on the known criminals and running on the unknown after
each change. You may want to try using the User Set Randomization
option with Reset Weights for these experiments in order to start
from a standard set of initial weight values (see Section 8.2.9). What
happens to the values of the outputs? Try increasing the number of
hidden layer neurons in the neural network and retraining. What
happens when the unknown is matched now? Try adding more
criminals with characteristics spaced evenly from each other and
those already in the training set. Does the neural network do a better
job of finding matches?

Important Points:

Neural network outputs should not be designed to make many
fine distinctions.

Several separated neural network outputs can convey more
information than a few combined outputs.

Setting the Training Tolerance more tightly than is necessary
may interfere with generalization within the neural network.

Too much network capacity (size) and excessive training time
may let the neural network “crib” rather than learn.

Neural networks require comprehensive, well-sampled training
data in order to develop good generalizations

5.5 Credit Rater — EZCREDIT.XLS {EZ Credit}

�(������	
�� {�(������} provides another demonstration of neural
network pattern matching. �(������	
�� {�(������} is similar in
concept and structure to ���%"	
�� {�&� %��'}, but it provides an
example of how the input types may also be categorized by indicators

52 5.5 Credit Rater — EZCREDIT.XLS {EZ Credit}

 October 17, 1994

using binary values, in a similar fashion to the outputs in
���%"	
�� {�&� %��'}.

In this demonstration the Credit Approval Manager for EasyCredit
Corporation has set up a database containing individuals
distinguished by four characteristics: Income, Credit Experience,
current Debt Burden, and prior Bankruptcy status. These
characteristics are then matched to the actual credit history of the
individuals EasyCredit has compiled from working records.
EasyCredit expects that once the neural network is taught on its
database of current clients, it will be able to use the neural network
to rate new applicants.

Since the information contained in the credit records is varied, some
numerical, some categorical, and some yes/no types, the manager has
chosen to break each input type into one or more classifications or
subdivisions that she feels are meaningful without being too fine. For
each input type, the valid classification will be indicated by a 1, while
the other classifications will be indicated by a 0. For example, for
Income, she has chosen three classes: 0-30, 30-60, and 60+. She knows
that these income ranges tend to define breaks where people have
moderate, good, and excellent, ability to repay loans, respectively.

It is also possible that more than one class may be valid. For example,
in the case of Credit Experience, she has identified the three most
meaningful classifications as those people who have no credit cards,
those with a department store credit card or those with a major bank
credit card. Since a person can have both store credit cards and bank
credit cards, a 1 could be entered for each subdivision, if appropriate.

Each of the four major credit characteristics have been classified in
this way and entered into the worksheet for 16 customers. For these
customers, the credit risk, represented by the payment history
actually experienced by the company, is listed as Low, Medium, or
High. A test case, Joe Applicant, is shown in the last row.

To run this example:

1. Init Working Area — starting at AA1

2. Set Rows — 8 through 24, 1 Row/Pattern, 1 Row/Shift

5.5 Credit Rater — EZCREDIT.XLS {EZ Credit} 53

 October 17, 1994

3. Add Input Columns — C, D, E, G, H, I, K, L, M, and O
 (Note the omission of columns F, J, and N! Perform this
 operation as four separate Add Input Columns — C,D,E then
 G,H,I then K,L,M then O.)

4. Add Target Columns — Q, R, and S

5. Add Output Columns — U, V, and W

6. Set Mode Flag Column — Y

7. Set Network Size — 3 Layers, 4 Hidden Neurons

8. Set Network Parameters — Training Tolerance to 0.2,
 Testing Tolerance to 0.4,
 Epochs per Update to 10

With this configuration, use the Train Network command to begin
training. Neuralyst will stop after a short time. At this point it has
taken the credit records of EasyCredit’s past customers and
established from this database the characteristics that contribute to
credit rating and whether each characteristic does so positively or
negatively!

When it is done, use the Run/Predict with Network command to
evaluate the prospects of Joe Applicant. You will find that Neuralyst
predicts Joe will most likely be a Medium credit risk, though he has
a few characteristics of a High credit risk. This matches the Medium
credit risk rating given to him by our (hidden) scenario rules.

There is nothing preventing finer subdivisions. Income could be
broken down into increasing increments of ten thousand. Bank credit
cards could be expanded to separately indicate Visa, MasterCard, or
American Express. It is quite possible that the neural network will be
able to make finer judgments with this additional information. The
disadvantage to much finer subdivisions is the cost of maintaining
them when establishing or updating the database and the additional
computation time for the neural network with more inputs to consider.
Your experience and judgment should guide the process.

Important Points

Separated or categorized input values can be used to convey
information to the neural network in a more efficient way.

54 5.5 Credit Rater — EZCREDIT.XLS {EZ Credit}

 October 17, 1994

Too many categories can be burdensome to maintain and cost
additional computation time needlessly.

Your experience and judgment should guide the process to make
the most meaningful distinctions.

5.6 Marketing Analyzer — FIZZY.XLS {Fizzy Cola}

The demonstrations discussed so far have shown how Neuralyst can
be used for rule reproduction, generalization, prediction, pattern
matching, and association.)�((�	
�� {)�**� ����} will demonstrate
one way in which neural networks can be used to analyze data.

In)�((�	
�� {)�**� ����}, we meet the Vice President for Sales of
Fizzy-Cola. The Fizzy V.P. has divided the National market into eight
regions and assigned each region to a manager that reports to him.
As a great believer in decentralized management, he has allowed each
Regional Manager to allocate their advertising budget independently
of the others. The Fizzy V.P. is also scrupulously fair as he has made
sure that each region has an equivalent amount of advertising money
to spend in proportion to their population base.

Advertising money can be spent in four basic ways: In-store
promotions (for example, store displays, price discounting), direct
mail (of coupons or other promotional offers to homes), print media
(newspaper or magazine advertisements), and radio/TV
(commercials). When he reviews the results for the current quarter,
he discovers that each Regional Manager has developed a unique
allocation of advertising dollars for these four primary categories. He
also determines that the sales growth in each region has varied
greatly.

Of course, it would be possible to encourage the other regions to
duplicate the budget allocation developed by the Regional Manager
with the best sales results, but the Fizzy V.P. would like to find out if
an even more successful allocation can be developed using the
information contained in the current quarterly report.

The Fizzy V.P. has entered the report data into a worksheet. The
budget data has been listed by advertising category and region. Since

5.6 Marketing Analyzer — FIZZY.XLS {Fizzy Cola} 55

 October 17, 1994

the different regions are not all exactly the same size, he has
eliminated population and other base factors by listing expenditures
in dollars per 1000 capita instead of total dollars and sales as
percentage growth rather than total dollars.

In addition to the standard data rows, there are five more rows. The
first four rows of these will be used to “probe” the neural network, once
Neuralyst has learned the relationships between the different
advertising budgets and each region’s sales performance. The probing
is done by taking each category in turn, and setting it to the maximum
value known for that category while setting the others to the
minimum values known for those categories. In this case, there are
four advertising categories, so there are four rows set up for probing.
Click on the cells in the range C14 to F17 to see the Excel formulas
used to generate the maximum or minimum values.

In each one of these cases, the probe will maximize one of the neural
network’s inputs, while minimizing all the others. In this way, we can
try and quantify the response of a neural network to individual inputs.

The Fizzy V.P. will use the information garnered from this probing to
develop a new budget allocation, which we will test for him by entering
into the last row.

To run this example:

1. Init Working Area — starting at N1

2. Set Rows — 6 through 17, 1 Row/Pattern, 1 Row/Shift

3. Add Input Columns — C, D, E, and F

4. Add Target Columns — H

5. Add Output Columns — J

6. Set Mode Flag Column — L

7. Set Network Size — 3 Layers, 4 Hidden Neurons

8. Set Network Parameters — Epochs per Update to 10

Train the neural network with this configuration. Neuralyst will be
active for a short time and then complete its training. At this point,

56 5.6 Marketing Analyzer — FIZZY.XLS {Fizzy Cola}

 October 17, 1994

Neuralyst has discovered the underlying relationships between
Fizzy-Cola’s advertising expenditures and sales performance!

Once the neural network is trained, run the neural network so that
the probe rows will be evaluated. When that is complete, you will see
the results of the probe in cells J14 through J17. The greatest output
occurs for Radio/TV, second is In-store, third is Print Media, and last
is Direct Mail.

Test this result by placing the values 5, 1, 2, and 10 in the cells C18
to F18, respectively, of the Test Budget row. H18 has already been
programmed with the formula used to model the sales performance
in the other cases of this scenario. You will find that the resulting
predicted sales growth of 26.75% is 0.5% higher than the best previous
case, the Northwest region. The Fizzy V.P. has achieved his goal of
bettering the prior sales performance using data analysis from
Neuralyst.

The technique shown here can be very useful; however, you should
always test the results for sensibility before using them as it is
possible to go astray.

First, it is important to minimize the number of effects that are being
analyzed, so that the effect of each factor can be seen more clearly. If
several factors are changing at the same time, then it will be difficult
to untangle the knot of inter-relationships. One way to do this is to
use ratios and percentages rather than absolute numbers. Another is
to hold parameters constant where possible. In the example here, the
ratio, dollars per capita, was used as input, the sales growth, as a
percentage, was used as the output and the total of advertising dollars
for each population unit was constant.

If the total advertising dollars in proportion to the population base
had not been constant, would that make the data impossible to
analyze? No. It would mean more probe cases would be needed, in this
case with varying totals so the response of the model to different total
amounts could be measured. Try experimenting with this case.

Second, this case is simplified in that all the inputs contributed
positively to the output result. In most cases, some of the inputs will
contribute negatively, that is the more the input is increased the more
the output is reduced. This case needs to be distinguished from the

5.6 Marketing Analyzer — FIZZY.XLS {Fizzy Cola} 57

 October 17, 1994

simpler case where the input has little effect on the output.
Recognizing these distinctions is important to a correct analysis.

Additionally, there are times when two or more inputs may interact
with each other. These cases cannot be detected with probe cases that
only have one input set to the maximum. An example of this can be
seen in the LOGIC.XLS {Logic} or PARITY.XLS {Parity} demonstrations. In
either of those worksheets, the presence of one 1 on an input results
in a 1 on the output, yet two 1’s results in a 0 — not a 2. If you suspect
that this may be occurring, then probe cases where two or more inputs
are set to their maximum values can be used.

Finally, in more complex cases, it may be useful to use probe cases
where one input varies by fixed increments, for example, 10% of the
input range per case, while the other inputs are held constant, usually
at the minimums. This will result in a response curve, which can be
plotted with Excel’s charting capabilities. Each input can be probed
in this way, resulting in a family of response curves that can be studied
to determine the characteristics of the internal model developed by
the neural network.

Important Points

Methodical probing of the neural network can lead to a successful
analysis of the input data and its underlying relationships.

The number of parameters being measured should be minimized
to ease the difficulty of interpreting results.

Positive, negative and inter-related effects should all be
considered and probe cases created to test for them if appropriate.

In some cases, generating response curves for each input may be
useful in achieving a successful analysis.

5.7 Fundamental Stock Analysis – AMETEK.XLS {Ametek}

In �����"	
�� {�#���'}, fundamental stock data (real world!) for the
last twenty years for a smaller (annual revenues about $800 Million)
New York Stock Exchange listed stock, Ametek (ticker symbol AME),

58 5.7 Fundamental Stock Analysis – AMETEK.XLS {Ametek}

 October 17, 1994

have been entered into the worksheet. This kind of data is readily
available from a variety of sources. Two popular ones are the Standard
& Poors stock data sheets and the Value Line Investment Survey
stock reviews.

The data is primarily organized on a per share basis. These are: sales
revenue per share (Sls/Sh), cash flow per share (CF/Sh), earnings per
share (Ern/Sh), dividends per share (Div/Sh), capital spending per
share (Cap$/Sh), book value per share (BV/Sh), average price to
earnings ratio for the year (Avg P/E), relative price to earnings ratio
for the year compared to the overall market (Rel P/E), dividend yield
(Div %), and the average price per share for the year (Avg $/Sh). (If
you do not understand the terms used here please consult a stock
investment book to learn the significance of these and other
fundamental measures.)

While we could apply Neuralyst to this data directly, it would not be
the most effective way to present the data to the neural network.
Remember that neural networks work better if they are not required
to make many fine distinctions in the input values. While we don’t
know if the distinctions between the values in this example will be
critical, it is obvious that the values for many of the inputs take a
different value for each row. Thus we should assume that each of these
could be important to a successful forecast.

In order to satisfy the need to present the full range of the data to the
neural network while also resolving the need to minimize the number
of distinct values, we can present the differences between values. Thus
a 1 point change in an input value with a full range of, for example,
10 to 25 would only represent a 6% change presented in this way.
However, a 1 point change might represent 50% of the maximum
change from year to year when presented in the context of differences
between values.

There is another problem. Not all 1 point changes are equal! For
example, a 1 point change from a base of 10 is more significant than
a 1 point change from a base of 25. The first represents a 10% change,
while the second represents a 4% change. One way to resolve this
discrepancy is to take the logarithms of the input values. Logarithms
have the property that a given percentage change in an input value,
regardless of the starting point of the input value, will always be

5.7 Fundamental Stock Analysis – AMETEK.XLS {Ametek} 59

 October 17, 1994

represented by the same change in logarithmic value. Thus, a 50%
increase, whether starting from 10 or from 25, would always be
represented by a change of 0.41 in the natural logarithm (it doesn’t
matter whether common or natural logarithms are used as long as
the usage is consistent).

However, taking differences or logarithms may not make sense if the
relationship between instances is not structured in time or some other
dependent fashion. For example, taking differences between
instances in ���%"	
�� {�&� %��'} would not make sense. This is
because there is no reason to expect any relationship or special order
between the processing of one criminal and the next criminal.

In those problems where there is a structured relationship, such as
time, between instances, examples, or cases, these two methods are
individually applicable. They can also be combined by taking the
differences of the logarithms of the input values.

In order to implement the techniques just described, the differences
of the logarithms of each input value from the previous input value
have been computed in a new area just below the original area. (Note
that the differences of the logs of two values is the same as the log of
the ratio of those values. Though we describe it as differences, the
formulas programmed are expressed in the ratio form since only one
log is computed rather than two in this form.) Since each row in this
area requires two rows from the original area so it can be computed,
the first year, 1974, can no longer be shown.

Once the new area has been set up, we need to establish the training
targets. In this case, we take advantage of future knowledge.
Basically, we are setting the neural network to find any relationships
that may exist that can be correlated to, or used to forecast, what will
happen in the succeeding year during the training process. When the
training process has ended, the future knowledge will no longer be
available - but by then the relationships that could forecast that future
may have been uncovered.

The Buy training target is established by “peeking” ahead to the next
year and checking if the stock price has risen by at least 20% from the
current year. If it has, then that is deemed a positive movement and
the stock should be purchased in the current year, indicated by a BUY

60 5.7 Fundamental Stock Analysis – AMETEK.XLS {Ametek}

 October 17, 1994

in the Buy column. Click on the cell N29 (or similar cell in column N)
to see the formula used to generate this target.

The Sell training target is generated in a similar fashion, but in its
case if the stock has not at least retained its current price, then that
is deemed a negative movement and the stock should be sold in the
current year, indicated by a SELL in the Sell column. Click on the cell
O29 (or similar cell in column O) to see the formula used to generate
this target.

(Note that the last row has no targets for training or testing. Since we
cannot really look into the “future”, except in hindsight, the number
of rows that we “peek” ahead determines the number of rows that
must be left blank at the end of the Target columns.)

To run this example:

1. Init Working Area — starting at V1

2. Set Rows — 29 through 48, 1 Row/Pattern, 1 Row/Shift

3. Add Input Columns — C through L

4. Add Target Columns — N and O

5. Add Output Columns — Q and R

6. Set Mode Flag Column — T

7. Set Mode Rows — 48, Set Symbol Row

8. Set Network Size — 3 Layers, 6 Hidden Neurons

9. Set Network Parameters — Epochs per Update to 10

Train the neural network on the data with this configuration. After
some time Neuralyst will stop training. Has Neuralyst uncovered
relationships that can be used to forecast the price performance of
Ametek stock? Try running the neural network to make a forecast for
the most recent year, 1994. The forecast will likely be to Sell Ametek
stock for 1994, given 1993’s data. As of the publication date of this
manual, that may or may not have been a good forecast. This is
because the current price of Ametek is up 20% primarily due to a 20%
stock repurchase that occurred in 1994. This is a reminder that a

5.7 Fundamental Stock Analysis – AMETEK.XLS {Ametek} 61

 October 17, 1994

neural network cannot predict events for which no training or
modeling has been done.

In fact, this forecast, while it is useful for this demonstration, should
not be relied upon at this point, independent of the probable outcome
of a single prediction. In this case, there are only 17 data sets available
to train the neural network. For real-world data, particularly data
that is as noted for its “noise” content as stock data is, much more
training data should be presented before the forecasts of the neural
network should be considered in any serious way.

This can be done by going backward and presenting data from more
previous years than shown in this example. Unfortunately, this
approach may be difficult to implement for at least two reasons. First,
data much older than this is not as readily available. Second,
economic, competitive and other structural conditions often change
significantly over such a long duration. In the case of Ametek, for
example, it was a much different company in the 1950’s and 1960’s
than it has been in the 1970’s and 1980’s. In order for the neural
network to identify the relationships between input factors while
these underlying conditions are changing, even more data must be
presented so enough cases representative of their effects can be seen
by the neural network. After a certain point, this can become an
impossible task. As an example, events such as the aforementioned
stock repurchase are rare or unique events which have few
precedents.

Another approach that is more likely to be successful is to present
data from a large number of companies during the same time period.
This would hold certain implicit factors constant, for example general
economic climate, interest rates, credit availability, inflation, and so
on, allowing the neural network to measure the factors that lead to
relative differences in performance. Two specific variations on this
approach would be: 1) to train the neural network on companies that
are in the same industry or produce the same product, or 2) to train
the neural network across the spectrum of companies that are
structured in similar ways, for example conglomerates or
highly-leveraged companies.

62 5.7 Fundamental Stock Analysis – AMETEK.XLS {Ametek}

 February 21, 1995

Important Points:

Taking differences between input values is a useful technique for
improving the ability of the neural network to interpret the data.

Taking logarithms of input values is another useful technique for
improving the ability of the neural network to interpret the data.

Combining the two techniques of differences and logarithms is
also useful.

For either or both of these techniques to work there should be a
structured relationship, such as time, between instances,
examples or cases.

Training a neural network for forecasting usually requires some
use of “future knowledge”.

Be sure there is enough training data and the neural network is
tested thoroughly before you rely on its predictions.

Be sure the training data you use does not contain more
underlying conditional variations than you want the neural
network to consider.

5.8 Technical Stock Analysis — DJIA.XLS {DJIA}

In �+��	
�� {�+��} price data on a weekly basis for the Dow Jones
Average of 30 Industrial stocks from the beginning of January 1993
through September 1994 have been entered into the worksheet. This
data consists of the highest price for the week, the lowest price for the
week, the closing price on the week and the total volume of stocks
traded in the market. This kind of data, whether on a monthly, weekly,
daily, hourly, or even minute-by-minute basis is the starting point of
most technical analysis methods.

We will use another set of techniques, as distinguished from the
differences-of-logs form used in �����"	
�� {�#���'}, to pre-process
raw price data into more meaningful forms. These will include a
differences of inputs over time and moving averages. (Some of the
pre-processed columns in this example were actually generated by the

5.8 Technical Stock Analysis — DJIA.XLS {DJIA} 63

 October 17, 1994

accompanying package Trader’s Macro Library. See Appendix G for
a discussion of how to load and use this macro toolbox for technical
investment analysis.)

In the first pre-processed input column, the Close of the current work
is detrended by taking the difference from the previous week, this is
labeled Delta Close. The second pre-processed input column is
generated by taking the ratio of the current Close to a previous Close
as a percentage, this is labeled ROC or Rate of Change. The third
pre-processed input column is generated by taking the difference of
the Close of the current week from the Close five weeks ago. This
difference over long periods of time is called “Momentum” by technical
investment analysts. Finally, the last pre-processed input column is
filled with the difference between a five week Moving Average of the
Close for each week and a three week Moving Average of the Close for
each week. This difference of Moving Averages of different periods is
known as a Moving Average Oscillator by technical investment
analysts. (Notice that the ROC, Momentum and Moving Average
cannot be computed until a number of weeks of data are available.
This will result in the first five rows being skipped when we give the
Set Rows command.)

In setting up the targets for training, we will make use of future
knowledge as in ���������� {������}. Our Buy and Sell targets will be
determined by the future value of the Close column. If the Close for
the next week will be higher than the Close for this week, then the
Buy target will be set for this week. If the Close for the next week will
be lower than the Close for this week, then the Sell target will be set
for this week.

(As in ���������� {������}, the last row has no targets for training or
testing. Since we cannot look into the “future”, except in hindsight,
the number of rows that we “peek” ahead determines the number of
rows that must be left blank at the end of the Target columns.)

We will use a new technique in this neural network example, that of
iterated data windows. So far in these examples, we have only set the
neural network to train on one row of the worksheet at a time. For
time based problems, this corresponds to making predictions while
looking at data from just one point in time. In fact, there is every
reason to believe that the relationships between values at different

64 5.8 Technical Stock Analysis — DJIA.XLS {DJIA}

 February 21, 1995

points in time are also significant to successful prediction. To do this
we will set the number of Rows per Pattern in the problem definition
to be 5. This corresponds to looking at the most recent 5 weeks of price
data in every prediction. With this setting, Neuralyst will present 5
weeks at a time to the neural network, stepping one week each time.

To run this example:

1. Init Working Area — starting at U1

2. Set Rows — 11 through 97, 5 Rows/Pattern, 1 Row/Shift

3. Add Input Columns — H through K

4. Add Target Columns — M and N

5. Add Output Columns — P and Q

6. Set Mode Flag Column — S

7. Set Mode Rows — 97, Set Symbol Row

8. Set Network Size — 3 Layers, 12 Hidden Neurons

9. Set Network Parameters — Training Tolerance to 0.2,
 Testing Tolerance to 0.4,
 Epochs per Update to 10

Train the neural network with this configuration. After a short time
Neuralyst will stop training. Has Neuralyst learned to predict the
price performance of the Dow Jones Industrial Average from price
data alone? Try running the neural network on the remaining data
and compare the results to the targets. How did it do?

Most likely the matches are good, perhaps 60-70%, but not as high as
we are used to from prior examples. Technical analysis of stock (or
commodity) prices is a difficult problem and generally any predictive
results with an accuracy better than 50% could provide an important
edge in a trading situation.

Further, as with �����"	
�� {�#���'}, the number of weeks of data
provided in this example is comparatively small when the high noise
factor in stock prices is considered. In actual use, much more data and
more extensive use of the kind of pre-processing we did with ROC,
Momentum, and Moving Average Oscillator could help in establishing

5.8 Technical Stock Analysis — DJIA.XLS {DJIA} 65

 October 17, 1994

more sophisticated neural network models for stock or commodity
trading.

Most important though is the complexity of the system being modeled
by the neural network. If a system has a well-defined structure with
clear relationships between data, then a neural network will do well
when modeling it. If a system is completely unordered and random,
or its relationships are much weaker than the noise that is present,
then a neural network will not be able to model it successfully.

Important Points:

Multi-row data windows are an important technique to present
time structured (or any other inter-related) data to a neural
network.

Developing and providing intermediate processing results can
help the neural network build more sophisticated internal
models.

Predictive accuracy is related to the complexity of the system
being modeled and the amount of “noise” present in the system.
In the worst case, random systems cannot be modeled by neural
networks.

5.9 Shape Recognizer — SQUARE.XLS {Square}

�,����	
�� {�-&���} will demonstrate the use of Neuralyst’s
two-dimensional capabilities for analysis and pattern matching
through the recognition of squares as distinguished from other
shapes. This is a simplified, but highly relevant example, derived from
the problem of recognizing shapes in applications such as robotic
vision, satellite image processing, or optical character recognition.

In these and other similar applications, image data is organized as a
rectangular grid of values, where each grid position is called a pixel,
or picture element. A photograph or other image may be scanned
(another term is digitized) and converted to pixels by imposing this
grid over the image and converting the amount of light that is present
at each grid position into binary, discrete or continuous values. The

66 5.9 Shape Recognizer — SQUARE.XLS {Square}

 October 17, 1994

greater the number of pixels, the greater the scanning resolution, and
the more accurate a representation the scanned image will be of the
original image.

For medium resolution image processing, it would be common to see
grids of 100 by 100 to 250 by 250 and with pixels having 16 to 256
discrete values. For high resolution image processing, grids of 500 by
500 to 2000 by 2000 and pixels having 1000 to 4 billion (essentially
continuous) discrete values are possible. The resolutions of your
computer monitor or TV screen are representative of the high-end of
medium resolution or the low-end of high resolution displays.

In �,����	
�� {�-&���} pattern data has been entered into the
worksheet as symbolic values in an input grid that is 6 by 6; obviously
low resolution, but the principles remain the same. This data consists
of alternate examples of squares in various positions in the field, and
assorted odd-shaped, but otherwise regular, “blobs”. The neural
network will be trained to symbolic outputs, indicating whether the
shape is a square or is a blob.

In order to train a neural net on image data we will need to have it
accept inputs in a two-dimensional form. We will do this by expanding
on the iterated data window technique used in �+��	
�� {�+��}, by
increasing the value of Rows to Shift per Pattern in the Set Rows
command from 1 so that the number of Rows to Shift equals the
number of Rows per Pattern. This technique may be called
Stepped data windows.

This example will also make use of input noise. Input Noise is one of
the parameters that can be set by Set Network Parameters. Setting
moderate values of Input Noise provides for slight variations in the
value of training data between each training epoch. Moderate values
of input noise encourage the neural network in the development of
generalizations. Large values of Input Noise are usually not useful.

To run this example:

1. Init Working Area — starting at R1

2. Set Rows — 6 through 90, 6 Rows/Pattern, 6 Rows/Shift

3. Add Input Columns — C through H

5.9 Shape Recognizer — SQUARE.XLS {Square} 67

 October 17, 1994

4. Add Target Columns — J and K

5. Add Output Columns — M and N

6. Set Mode Flag Column — P

7. Set Mode Rows — 90, Set Symbol Row

8. Set Network Size — 4 Layers,
 36 neurons on Layer 2,
 9 neurons on Layer 3

9. Set Network Parameters — Input Noise to 0.3,
 Epochs per Update to 5

Train the neural network with this configuration. After a short time,
Neuralyst will stop training. Try testing the neural network on the
additional cases given. You will find that Neuralyst has learned to
distinguish squares from other shapes!

Try seeing what happens without Input Noise. Train with Input Noise
reset to 0 a few times. While Neuralyst will still distinguish most
shapes, it will not train as consistently nor perform as reliably. Try
increasing Input Noise to larger values, up to 1. How well does the
neural network train or perform under these conditions?

In addition to encouraging the neural network to develop
generalizations, moderate values of Input Noise may also be used help
keep a neural network from getting trapped in local minima (see
Section 5.1).

You have probably noticed that this example uses a four layer
network. Try multiple runs with only three layers (36 hidden layer
neurons). You will find that Neuralyst gets the right answers most of
the time, but not as often as with the four layer network suggested.
Extra layers can improve a neural network’s generalization
capability, particularly when there are complex features in the data.

The technique we used in this example, iterated or stepped data
windows, is primarily used for conserving data space and retaining
data in formats familiar to the user. The neural network itself is not
given any information about these organizational details when it is
being trained or tested. Neuralyst presents all data items, regardless

68 5.9 Shape Recognizer — SQUARE.XLS {Square}

 February 21, 1995

of their position in time or space, consistently to the neurons of a
neural network so that any relationships between different neurons
are developed as part of the training process.

As a matter of fact, this example could have been presented so that
each grid of 6 by 6 was presented as a single row of 36 values with the
same results. Similarly, three-dimensional and higher-order data
structures can also be presented to Neuralyst by remapping them into
a one- or two-dimensional format.

Important Points:

Use stepped data windows to build neural networks to analyze
two-dimensional problems.

Use moderate values of input noise to improve training
consistency and encourage generalization by the neural network.

Use moderate values of input noise also to help keep neural
networks from getting trapped in local minima during training.

Adding more neural network layers can improve analysis
capabilities when complicated relationships are present in the
data.

Multi-dimensional data structures can be presented in many
ways to a neural network; the neural network will develop the
necessary structural relationships.

5.9 Shape Recognizer — SQUARE.XLS {Square} 69

 October 17, 1994

70 5.9 Shape Recognizer — SQUARE.XLS {Square}

 October 17, 1994

Chapter 6

Advanced Neuralyst Topics

6.1 Input and Output Value Ranges

If you have read Chapter 3 carefully, you will be aware that neural
network outputs can only range from 0 to 1. If you examine the sigmoid
that is the default activation function for every neuron in the neural
network, you can see the reason for this is a mathematical
consequence of the way the sigmoid function works. In fact, a neural
network also works best when its inputs range from 0 to 1, though the
limitation here is not as absolute as for the outputs. While the
examples we’ve shown used many inputs and outputs that complied
with this range restriction, there were also instances where that
wasn’t true and Neuralyst still worked. In fact, if none of the values
held to the restricted range, Neuralyst would still have worked.

So how does Neuralyst deal with these unrestricted ranges when
neural networks work best within the restricted range of 0 to 1?
Basically, Neuralyst pre-processes all input and output data and
performs offset and scaling operations to match the actual ranges to
the range 0 to 1. For example, if an Input column has values that
range from 3 to 11, first 3 is subtracted so that the new range is 0 to
8, then each value in the new input range is multiplied by 0.125 (the
reciprocal of 8) so that all values now fit in the range 0 to 1. In the
case of outputs, the reverse process takes place.

In all cases, you are able to use numeric values that make sense or
are convenient to your problem. Neuralyst will adjust the data in the
input or output direction so the neural network is able to operate
within its best value ranges.

6.1 Input and Output Value Ranges 71

 October 17, 1994

Neuralyst also offers a variation of this scaling process through
the Scaling Margin parameter in Set Enhanced Parameters.
Scaling Margin causes the input and output data to be mapped into
a smaller range than 0 to 1. A setting of 0.1, or 10%, in the Scaling
Margin parameter causes an extra 10% to be reserved, 5% each at the
bottom and top of the range, so the input and output data are now
mapped into the range 0.05 to 0.95.

The allocation of Scaling Margin serves at least two functions. First,
there are some problems, particularly those where the inputs and
outputs are linear and continuously variable, that are better modeled
when the activation function is restricted to output in the linear
portion of its transfer function than the saturated, or non-linear,
portion of its transfer function. Second, there are instances when new
input or output values may be expected to be above or below those
used to train or test the neural network model. Reserving some
headroom allows some continued utility to the neural network model
under these conditions, as long as the variant input or output values
are not excessive.

Neuralyst also offers another extension to data representation by
allowing the definition of symbolic input and output values. By
defining a Symbol List for each Input or Target column, the Symbols
are taken in order and interpreted for you. For example, if the
Symbol List is defined as <RED, GREEN, BLUE>, then the range is
divided into three equal subranges of 0 to 0.33, 0.34 to 0.66, and 0.67
to 1. An input value that is set to BLUE will be entered as 0.83, the
center value of the 0.67 to 1 subrange. An Output value that is 0.95
will be found to be in the BLUE subrange and reported as BLUE. All
the details of mapping Symbols to subranges and interpreting values
to Symbols are all managed by Neuralyst for you.

A final issue regarding input and output value ranges are the defined
minimum and maximum values for Input and Target columns. Each
time that a neural network model is trained, the minimum and
maximum values for each column define the range for that column
that must be mapped into the neuron input or output range of 0 to 1,
or subrange reduced by the Scaling Margin. If new data is later added
to the neural network model that has a lower minimum or higher
maximum in that column then that will cause a shift in all the values
previously used to train the network. For any significant shift in the

72 6.1 Input and Output Value Ranges

 October 17, 1994

minimum or maximum values, this will invalidate the training of the
neural network.

The MIN scale row and MAX scale row mechanism allows the actual
minimum or maximum values at the time of training to be recorded
and used to fix the scaling range to the correct range that was used
for training. The Scaling Margin parameter will extend the set range
by the designated amount allowing values that fall within the
headroom region to be accepted, even if new values are added which
exceed the stated range. If the MIN scale row and MAX scale row are
set and values fall outside the Scaling Margin modified range, then
the neural network will reject those values.

6.2 Setting Network Size

Setting the optimum network size for a problem is an intriguing and
sometimes difficult process. The number of inputs and outputs are
automatically defined by the structure of the problem. The number of
hidden layers and number of neurons in each hidden layer are left to
you (within the limits of Neuralyst’s capabilities).

It has been shown that an arbitrarily large three layer (that is one
hidden layer) backpropagation network can approximate just about
any real-world mathematical function to an arbitrary degree of
accuracy. If this is true, then why does Neuralyst allow as many as
six layers (that is four hidden layers)? This is because in the three
layer case the number of neurons in the single hidden layer may have
to be so large that the neural network is impractical or impossible to
implement. Multiple hidden layers allow greater flexibility for
generalization (internal organization and model development) during
the learning process and can significantly reduce the need for large
numbers of neurons.

So how do we determine the number of hidden layers? There are no
real rules regarding this, only rules of thumb. Generally, the more
complex the problem and the more inter-related you perceive the
problem characteristics to be, the more layers will be needed. It is best
to start with three or four layers. Add additional layers only as the

6.2 Setting Network Size 73

 October 17, 1994

training proves to be difficult or impossible or as the predictive ability
of the neural network proves unsatisfactory.

How do we determine the number of neurons in each hidden layer?
Again, there are no real rules regarding this, just rules of thumb.
Generally, it is best to have a pyramidal shape, that is have the
greatest number of neurons in the initial layers and have fewer
neurons in the later layers. A good working range for the number of
neurons in each layer is to have a number from mid-way between the
previous and succeeding layers to twice the number of the preceding
layer. For example, if there were 12 neurons in the previous layer and
3 neurons in the succeeding layer, then a working range for the
neurons in the intermediate layer would be about 6 to 24.

Often setting network size is a process of adjustment and iteration.
You need enough layers and neurons for characteristics to be
identified and generalizations to be made, but too many layers and
neurons will be costly in computation time.

A methodical process that is often successful is to increase the size of
the network (layers and neurons) in large jumps and look for
successful training, then decrease the network size incrementally and
observe the predictive accuracy.

The Neuralyst Genetic Supervisor can be used to automate the neural
network optimization process using genetic technology. See Chapter 7
for a further discussion.

6.3 Learning Rate, Momentum, and Training Tolerance

The settings of Learning Rate and Momentum control the way in
which the error is used to correct the weights in the neural network
for each training case. Some settings may cause surprising behavior.

When Learning Rate is set to high values (close to 1), there is some
possibility that you will see unstable behavior. This is often evidenced
as wildly varying values of RMS Error (remember that neural
networks also undergo learning plateaus which may show small
increases of RMS Error for brief periods; we are not talking about
these). As the Learning Rate is set lower the possibility of unstable

74 6.3 Learning Rate, Momentum, and Training Tolerance

 October 17, 1994

behavior is reduced. Generally, when Learning Rate is set to 0.25 or
less, you will not see any unstable behavior. However, lower values of
Learning Rate will result in longer training times.

A more aggressive, though workable, approach is to set the
Learning Rate high and to decrease it if you see any unstable
behavior. This is essentially what happens when you use the Adaptive
Learning Rate mode in the Set Enhanced Parameters command.
A more conservative approach is to start with Learning Rate low and
to try increasing it if training is taking too long.

The higher the value of Momentum, the greater the percentage of
previous errors is applied to weight adjustment in each training case.
For example, when Momentum is set at 0.5, then 50% of the weight
adjustment will be due to the current error and 50% will be the weight
adjustment applied in the previous case.

This means that any weight adjustment due to the error from one
training case will have a continuing effect with an exponential decay.
For example, consider a training case t; with Momentum set to 50%,
the weight adjustment will be portioned as just described. In the next
training case, 50% of the weight adjustment will be due to the error
from t+1, 25% will be due to the error from t and the remaining 25%
will be due to the previous cases. In the third training case, 50% of
the weight adjustment will be due to t+2, 25% will be due to t+1 12.5%
will be due to t and 12.5% from previous cases. As each case is
considered, then the effect on weight adjustment of each previous case
is halved (or reduced in proportion as determined by the Momentum
setting if it is not 0.5).

In the special case when Momentum is set exactly at 1, then 100% of
the previous error is used for weight adjustment. In the very first
training instance, there are no previous weight adjustments, thus the
first weight adjustment will be 0. Since the next weight adjustment
takes 100% of the current weight adjustment, that will also be 0. This
continues, regardless of how many training instances are considered.
This is why Momentum must be less than 1.

In the special case when Momentum is set exactly at 0, then 0% of the
previous error is used. Therefore, each weight adjustment is applied
as 100% of the weight adjustment due to the current training instance;

6.3 Learning Rate, Momentum, and Training Tolerance 75

 February 21, 1995

no previous values are included in the adjustment. This is a workable
setting.

Setting Momentum to higher values helps to smooth out the training
process and prevent unusual cases from throwing the training off
track, while continuously correcting for consistent errors. Setting
Momentum lower may be appropriate for data which is more regular
and smoother or data for which the relationships to be learned are
relatively simple. It is generally necessary to experiment with
different values of Momentum to find an appropriate value for a
particular problem.

The Neuralyst Genetic Supervisor can be used to automate the
Learning Rate and Momentum optimization process using genetic
technology. See Chapter 7 for a further discussion.

The setting of Training Tolerance is used primarily to determine
how much training the neural network undergoes. When
Training Tolerance is set to a number, for example 0.4, Neuralyst will
continue training the neural network until the output of the neural
network for every training case is within 40% of the target range for
every target value. Thus, if the target range has values from 100 to
300, then 40% of the target range is 80, or 0.4 x 200 (300-100). Thus
every output value must be within 80 of the target value before
Neuralyst will stop training.

It is not usually useful to have the Training Tolerance set to greater
than 0.5. In the case of binary (0 or 1) values, Training Tolerance set
to 0.5 means that the outputs must be less than 0.5 to be considered
a 0 and greater than 0.5 to be considered a 1. While this is sufficient
for binary values, and proportionately tighter Training Tolerances
would be appropriate for multi-valued output cases, there are times
when you may want to set Training Tolerance tighter than strictly
needed to distinguish between the number of distinct outputs or to be
within some error allowance for continuous outputs.

Generally, neural network output accuracy on testing or running data
will be less than accuracy on training data. So, if a neural network
were trained to a Training Tolerance of 0.5, outputs, for example, that
should be 1’s would range from 0.5 to 1. If it were then run on testing
data, the outputs that should be 1’s might now range from 0.3 to 1.
This would result in some outputs being treated as 0 when they should

76 6.3 Learning Rate, Momentum, and Training Tolerance

 February 21, 1995

have been 1. Training to a tighter Training Tolerance, for example 0.4
or 0.3, helps alleviate these marginal conditions, in effect providing a
“guardband” between values that should be distinct or an extra
margin for error for values that are continuous.

However, setting Training Tolerance too tightly (close to 0) may create
additional problems. The first problem is a matter of practicality.
Tight values result in longer training times. The second problem is
more subtle. Since training time is increased, the opportunity for
overtraining is also increased.

Overtraining occurs as the neural network is forced to match the
target values more exactly. During this process it devotes capacity to
learning the exact values of the training data rather than to
generalization from the training data. If insufficient capacity is
available, then the Training Tolerance is not achievable and the
neural network will never stop training. If sufficient capacity is
available, then the Training Tolerance will be achieved, but testing
or running accuracy will suffer.

It is interesting to observe the behavior of the RMS Error generated
by the neural network on training data versus testing data as the
neural network trains. This can be done by setting the Error Limit
value in Set Network Parameters to a moderate value, for example
0.1, training the neural network, and then performing a
Plot Training Error. Typically you will see a reduction in the RMS
Error plot for the training data, with the rate of reduction changing
over time. If the neural network begins to overtrain, you may
eventually see it as a long plateau in the RMS Error plot for training
data; in some cases, the plot may begin rising. However, you will
generally see it much earlier as an increase or rise in the RMS Error
plot for testing data.

The Error Limit setting and the Plot Training Error command are
powerful tools for detecting the onset of overtraining; though at the
expense of increased processing time.

6.3 Learning Rate, Momentum, and Training Tolerance 77

 October 17, 1994

6.4 Learning, Weights, and Multiple Solutions

Learning takes place in neural networks through a weight adjustment
process that is driven by the error developed by the neural network
in each training instance. In a sense, you can visualize each weight
set as defining a point on a globe (using weights as latitude and
longitude on the globe). A neural network weight set that produces
the desired outputs then corresponds to a special location on that
globe. The training process is then similar to the game of “hot-or-cold”;
as each training instance is presented, the neural network may be
told that it is “cold” (or “hot”), in which case it moves a lot (or a little)
across the globe by adjusting its weights a large (or a small) amount.
As the neural network gets closer to the right location, it will get
“hotter” until it moves just enough to find the spot.

The weight adjustment process for a given weight of each neuron is
dependent on the prior value of the weight, the actual output, the
desired output and the related input for that neuron (see Section 3.4).
If the weights for all neurons were set to the same initial value, then
all neurons having the same output value and the same input values
in a training instance would have those weights adjusted by the same
amount (since the weight, input, output and desired output would be
the same). This is not the most desirable behavior and under some
circumstances can lead to a failure to learn (like going around in
circles). By setting the initial weights of a neural network to random
values, this undesirable behavior is avoided. However, this
randomization process raises another issue.

It is possible that more than one weight set will satisfy the input data
and training constraints (like looking for cities with population over
1 million that have English as the primary language — New York,
Los Angeles, London, and others would fit). In such cases, the initial
value of the random weight set (starting point) could change the
solution (city) the neural network finds each time. It is possible that
copying a randomized weight set, saving it, and copying it back every
time you wished to restart training could minimize this problem.
However, reducing, extending or even changing the sequencing of the
training data could change the solution found as well.

The existence of these multiple solutions may be disturbing to you
since they can manifest themselves as different predictions or

78 6.4 Learning, Weights, and Multiple Solutions

 October 17, 1994

behavior by the neural network. However, within the constraints of
the problem presented, any of these are perfectly satisfactory
solutions, so the neural network has no reason to prefer one over the
other. If you have such a preference, then you need to provide more
training data.

Setting Training Tolerance to high values also has the effect
of creating multiple solutions artificially. Setting any
Training Tolerance is analogous to drawing a circle around the special
location (or locations) that is desired. Any given point in that circle
would be a satisfactory solution. If the Training Tolerance is low
enough (circle is small), most weight sets (corresponding to points
within the circle) would behave in much the same way. If the
Training Tolerance is high enough (circle is large), some weight sets
may behave differently than others.

6.5 Some Causes of Poor Results

If a neural network is difficult to train, tests poorly, or if its real-world
performance doesn’t match its training and testing performance, what
can be done? The answer to this question lies primarily in having
sufficient experience with neural networks to understand their
capabilities and limits. The more neural networks you design and use,
the better you will become at getting the best results from them. In
many ways this is as much an art as a science. Until that experience
is gained, here are some considerations.

First, the neural network needs to be properly sized for the problem.
As discussed before (see Section 6.2), the number of layers and
number of neurons are under your control: too small a network and
the neural network may not be able to learn the problem; too large a
network and the neural network takes longer than necessary to train.
You need to observe the training behavior and test results to make
these judgments.

Second, also as discussed before (see Section 6.3), the neural network
may be overtrained. One way, already mentioned, to avoid
overtraining is to set a looser Training Tolerance (so that training
stops sooner). A second way is to set one of the cutoff limits so that

6.5 Some Causes of Poor Results 79

 October 17, 1994

Neuralyst will stop training after a certain number of epochs, after a
certain amount of time, or if RMS Error starts increasing.

Another technique to prevent overtraining, particularly with a
limited training set, is to modify the training data from presentation
to presentation so that some noise is present. That is, vary the training
data slightly with successive presentations so that the network
doesn’t recognize the exact values presented but rather the general
pattern. This can be done by setting Input Noise to small values. You
must choose the amount of noise added so that it is sufficient to
encourage generalization without overwhelming the underlying
relationships.

Another way you can address this is with more training data, enough
so that the neural network is forced into generalizations rather than
specifics. When preparing more data, be aware that some underlying
factors may not be constant and may have changed over the extended
training set (or even in the original training set); this is particularly
relevant for time-based data. If increasing the data set also increases
the amount of variation of such factors, then there needs to be enough
cases representative of each combination of factors for the neural
network to be able to distinguish between these. For example, it may
be very relevant to a fundamental analysis based model of a given
stock that the most current rise in sales was due to war-driven
revenues; however, without one or more additional examples of this
effect from other wars, the neural network may not be able to learn
the reason for the rise.

When the decision is made to increase the amount of data used for
training after experiencing poor performance, another decision must
also be made. Should the training be done incrementally, that is,
resume training with the existing weight set while adding the new
data, or should the training be restarted from a completely “blank”
neural network? The answer to this really depends on the problem
and its relationships.

If there is only one weight set that the neural network can develop to
satisfy the relationships inherent in the input data and targets, then
the incremental training and the blank-slate retraining will both
achieve the same general solution. If there are multiple weight sets
that the neural network can develop, due to the existence of multiple

80 6.5 Some Causes of Poor Results

 October 17, 1994

sets of relationships that are consistent with the data or due to a loose
setting of Training Tolerance which might allow several solutions that
are correct within the tolerance range, then the weight set actually
developed by the neural network will depend on how the training was
done.

While the weight set developed by the neural network in any case will
satisfy the data presented and constraints established during
training, it is possible that some other weight set, if it exists, might
be a better predictor during testing or running (see Section 6.4).
Different neural network weight sets (and thereby different predictive
behavior) may develop when trained incrementally as compared to
training from a blank-slate. This is often an indicator that the
Training Tolerance has been set high enough that multiple solutions
are acceptable. This may also be an indication that one or more factors
or relationships changed over the initial training period versus the
incremental periods. This may not be a problem unless you don’t have
enough data representative of these changing factors or relationships
(see the next paragraph). Usually, the only way to verify the existence
of this phenomenon in your problem is to try training with different
increments and observing the resulting predictive behavior.

In some cases, results may be poor because you haven’t chosen a
complete set of data representative of the conditions that are relevant.
This was alluded to earlier in terms of the number of cases in the
training data being sufficient to be representative. But this also
applies with regard to the different input types that you choose to
present. For example, if you were to design a neural network for
predicting customer activity in a department store, you would
probably find that it would be more accurate if some inputs indicated
Federal and local school holidays, though your first attempt to build
the model might only have considered the day of the week.

In fact, the success of a neural network depends to a large extent on
your ability to find the relevant types of input data and the manner
of their presentation. It is possible to present all the data types which
you perceive to have any relevance. In this case, the neural network
will, if it has enough capacity, learn which data types are really
relevant and which it can ignore in making a prediction. However,
this raises the cost of obtaining and maintaining the data for training
the neural network. Further, it requires greater computer resources

6.5 Some Causes of Poor Results 81

 October 17, 1994

in memory space and computing time in order to process the increased
neural network size. Realistically, you must select just a few data
types that you think are most relevant and include or exclude a few
types over time as you measure the performance of the neural
network.

In many cases, input data can be improved through restatement or
intermediate processing. A neural network can develop many internal
operations and correlations on its own; however, it makes no sense to
train the neural network to perform, for example, a moving average,
when Excel can compute it more exactly and more easily. Performing
these intermediate computations can reduce the training time, free
neurons for generalizations and, in many cases, facilitate the process
of generalization. (Software programmers are familiar with this last
phenomenon; the choice of data structures and programming
languages makes some operations much more or much less difficult
to implement even though they can all be expressed ultimately.)

The neural network targets deserve just as much thought as the
inputs. In some cases, for example, rule reproduction, the targets are
fairly obvious and easy to state. In other cases, particularly with
regard to predictive models, the targets will require some thought in
order to achieve the best statement. (Oracles throughout human
history have been notorious for requiring very careful statement of
the questions put to them!)

For example, the target for a technical analysis based stock model
could be stated in many ways: a future price level, a future price
change, a future price movement (up versus down), the number of
days to an up or down move, or the volume of shares to be traded prior
to an up or down move. Which of these is the best target depends not
only on what you want to achieve but also on the kind of data available
to be presented to the neural network. A neural network cannot make
any oracular predictions (despite the comment in the last paragraph),
it can only develop predictions from relationships that are present in
the data put to it.

These are just a few points of consideration if you find yourself having
a difficult time solving your problem with a neural network. While
there are many other points that could be made, this will help you
over a large number of tough spots.

82 6.5 Some Causes of Poor Results

 October 17, 1994

6.6 Experimenting with Enhanced Neural Networks

So far our discussion has focused on the standard backpropagation
neural network, as described in Chapter 3. Neuralyst also provides
several ways to modify the standard backpropagation neural network.
These can be grouped into the categories of selectable neuron
activation function, the ability to force weights to zero if they become
“insignificant”, and the ability to adapt learning rate dynamically in
proportion to the error of the neural network output. Let’s see how
these enhanced functions can help you to develop a better neural
network.

Neuron activation functions cause a “decision” to be generated from
a neuron. Thus changing the neuron activation function or its
activation parameters will change the nature and characteristic
behavior of the decision process. Six basic activation functions are
available in Neuralyst: Augmented Ratio, Gaussian, Hyperbolic,
Linear, Sigmoid, and Step. The behavior of all of these functions,
except the Step function, can be further adjusted through a Function
Gain parameter.

The Hyperbolic, Linear and Sigmoid functions are similar to each
other. They all generate inhibitory outputs for negative inputs and
excitatory outputs for positive inputs.

The Sigmoid function typically has a narrow region about zero
wherein the output will be roughly proportional to the input, but

Figure 6-6 Sigmoid Function

6.6 Experimenting with Enhanced Neural Networks 83

 October 17, 1994

Shal Farley

outside that region the Sigmoid function will limit to full inhibition or
full excitation. Thus a Sigmoid function is a switch with an
intermediate range where it can be discriminating.

The Hyperbolic function is shaped exactly like the Sigmoid function,
but it ranges from -1 to +1 rather than 0 to 1. Thus it has the
interesting property that there is inhibition near 0, but values at
either extreme will be excited to full levels, but in opposite sense. A
Hyperbolic function is also a switch with an intermediate range where
it can be discriminating.

The Linear function always generates outputs which are proportional
to the inputs, up to the level of full output. A subtle but important
distinction is that the Linear function is stepped, at the point when it

Figure 6-7 Linear Function

Figure 6-8 Hyperbolic Function

84 6.6 Experimenting with Enhanced Neural Networks

 October 17, 1994

Shal Farley

Shal Farley

transitions from proportional output to full output, whereas the
Hyperbolic and Sigmoid function are always smooth, that is
differentiable. Differentiability of the neuron activation function is an
important factor in getting consistent backpropagation training
behavior.

The Gaussian function is an interesting variation on the other
functions. It is derived from the equation which generates a normal
probability distribution and it has a central peak and low tails at both
ends. This results in excitation close to zero inputs and inhibition as
the inputs vary more significantly from zero.

Figure 6-9 Gaussian Function

6.6 Experimenting with Enhanced Neural Networks 85

 October 17, 1994

Shal Farley

The Augmented Ratio function is an upside-down version of the
Gaussian function. It is defined by the equation

y = x2

1 + x2

which is also known as the augmented ratio of squares. It has a central
valley reaching 0 and high tails at both ends. This results in inhibition
near zero and excitation as the inputs vary significantly from zero.
The Gaussian function and Augmented Ratio are both smooth
(differentiable).

The last function, Step, is not generally very useful, but it can be
interesting to observe its behavior for simple problems. It was actually

Figure 6-10 Augmented Ratio Function

Figure 6-11 Step Function

86 6.6 Experimenting with Enhanced Neural Networks

 October 17, 1994

Shal Farley

Shal Farley

the original activation function used in early neural networks called
Perceptrons. The Step function basically converts any negative input
into a fully inhibitive output and any positive input into a fully
excitatory output. This has the behavior of a switch; there is no fine
discrimination. It did not take long to reach the limit of capabilities
of Perceptrons and neural networks progressed beyond them.

Generally the Sigmoid function is far and away the most useful and
the Step function is the least useful. But an examination of the
characteristics of your own data and the desired decision function
behavior may lead you to try a non-Sigmoid function. Experiment!

Frequently inputs or connections will have a low contributory effect
on the output of a neural network. When this happens, the
backpropagation algorithm will change the weights over time to be
close to zero. However, there will still be some instances of excitation
which will cause the weight to jitter around zero. When this happens,
it increases the noise or uncertainty associated with an output.
Neuralyst has the option to select a threshold and to force weights
which fall below this threshold to be kept at a zero value. Forcing a
weight to zero is equivalent to breaking a connection in a neural
network.

It is usually best to set this mode after some initial training. Otherwise
it would be possible for weights which start close to zero, but which
would have been adjusted to a respectable value, to be forced to zero
unnecessarily. Another approach is to complete training, then do one
epoch of training with this mode set. This can help to clear the neural
network of meaningless connections. When this mode is set, it is also
frequently interesting to perform an Unpack Weights command and
use the resulting display to correlate the zero weights with your input
data.

It is important to be judicious in your use of this mode. It is possible
that some critical analysis may hinge on the resulting fine shadings
or distinctions generated by these low value weights! Always test your
results and evaluate the quality of predictions before and after setting
this mode.

In some instances, it may be difficult to find a setting of Learning Rate
that will allow learning to occur but which doesn’t take an inordinate
amount of training time. This can happen because large settings of

6.6 Experimenting with Enhanced Neural Networks 87

 February 21, 1995

Learning Rate cause too much adjustment to the weights during each
training epoch, causing the neural network to jitter around the right
area, while small settings of Learning Rate make too little progress
during each training epoch.

Neuralyst provides an option to enable an Adaptive Learning Rate to
address these situations. With this mode set, the Learning Rate
parameter is ineffective. Instead, Neuralyst will set the Learning Rate
to be proportional to the RMS Error generated during a training
epoch. Thus when a neural network is far away from being correctly
trained, the RMS Error will be high, and the Adaptive Learning Rate
will be at a maximum. As the RMS Error is reduced, the Adaptive
Learning Rate will be reduced proportionately. When the RMS Error
is very small and the neural network is on the verge of completing
training, the Adaptive Learning Rate will be at a minimum level still
able to achieve effective learning.

Note that it is not the best solution to enable the Adaptive Learning
Rate mode in all cases, since there are still many instances when a
large setting for Learning Rate will train a neural network perfectly
well. Setting the Adaptive Learning Rate in these instances will still
achieve correct and possibly even better training, but it will take
longer to complete the training, since the Learning Rate will be
smaller than could be useful.

6.7 Excel Charts and Neuralyst

The use of Excel’s built in charting functions can greatly enhance the
utility of Neuralyst. Neuralyst provides the Histogram Weights and
Plot Training Error commands (see Sections 8.2.8 and 8.2.10), but
Excel charts can be used with Neuralyst in many other ways.

One use is for the graphic presentation of your data. Thus, stock price
data can be shown as a High-Low-Close price chart, marketing data
can be shown as pie or bar charts, technical data can be shown as line
or scatter plots, and so on. Input data, target data and neural network
outputs can be shown as separate lines or regions, line extensions or
on their own charts.

88 6.7 Excel Charts and Neuralyst

 October 17, 1994

A second use is to help you visualize the match between targets and
outputs after training. This is particularly useful with regard to
different settings of Training Tolerance. Comparison plots of targets
versus outputs can show you how well the neural network may be
learning and also let you see whether or not tighter Training
Tolerances may be needed.

Charts can also aid in visualizing the behavior of your neural
networks. One technique, discussed in the example
��������� {�	

�����} (see Section 5.6), is to generate a response
curve for individual inputs to the neural network. This is done by
holding all inputs except one constant and then varying that one
evenly across its input range. The resulting response curves generated
in this way can give you a picture of how each input affects the outputs
both in direction and sensitivity.

Another technique is to plot the accuracy achieved on test data
for an increasing number of training epochs (by decreasing
Training Tolerance — see Section 6.3). If this technique is combined
with trials of different numbers of network layers and changing
numbers of hidden layer neurons, then it can be helpful in visually
identifying the optimum neural network configuration for your
problem.

Take advantage of Excel’s plotting capabilities. They can help improve
your presentation of the data as well as improve your understanding
of a given neural network and its behavior.

6.7 Excel Charts and Neuralyst 89

 October 17, 1994

90 6.7 Excel Charts and Neuralyst

 October 17, 1994

Chapter 7

Genetic Optimization of Neural Networks

7.1 Genetic Technology

A new feature of Neuralyst is the inclusion of a Genetic Supervisor
for enhancing the development of a given neural network model.
Normally, a user of Neuralyst must experiment with the
characteristics of a desired neural network model, adjusting the
number and types of Input columns, the neural network
configuration, and the neural network parameters in order to
determine the characteristics which best produce successful
predictions with the minimum amount of error or training time or
both.

The Genetic Supervisor will optimize the Input column set and
training parameters for a Neuralyst neural network model so that
subsequent usage or adaptation of the neural network model will
perform well as a successful predictor with a minimum amount of
training. This is done in an automated fashion, but at the expense of
a lengthy run for moderate size problems.

The Genetic Supervisor uses a special type of optimization technology
known as genetic algorithms. Just as neural networks are models of
biological neural networks that have the properties of adaptation and
inference; genetic algorithms are models of a selective evolutionary
process which develops superior entities from a population of entities.
The genetic algorithm used in Neuralyst attempts to select the best
subset of data from that provided as input, configure the best neural
network that will train with the data, and adjust the various
parameters that control the neural network to optimum points.

7.1 Genetic Technology 91

 October 17, 1994

While there are many methods for determining the optimum solution
to well-defined problems; there are very few methods for finding
optimal solutions to unstructured, poorly understood, or partially
unknown problems. Neural networks and genetic optimization are
two of these limited set of methods.

7.2 Operation of the Genetic Supervisor

Although genetic algorithms are directly modeled after biological
systems and behavior, the specific terms used in these two disciplines
are different. The Neuralyst Genetic Supervisor uses terms from the
literature of genetic algorithms to describe its parameters and
behavior. Due to the close relationship to biology, the language and
terms used to describe genetic algorithms can be defined in terms of
their correspondance to genetics terms.

In biology, specific genetic terms are used to express the desired
meaning. The chromosomes of a biological genetic system correspond
to strings in an artificial genetic system. Chromosomes are composed
of genes which take on values called alleles. Examples of genes are
those for eye color or height; examples of alleles are blue and tall. The
corresponding terms in artificial genetic systems are features and
values. For example, in the genetic system in Neuralyst two features
are input column name and learning rate; these features may take
the values A and 0.85, respectively. The entire genetic package of
chromosomes is called a genotype corresponding to the entire package
of strings called a structure. In the Neuralyst genetic system, there
are three strings, one for Input columns, one for network
configuration, and one for network parameters; the combination of all
three representing a structure which can define a neural network
configuration. The expression of a genotype as a biological entity is
called a phenotype, which corresponds to the expression of a structure
as a candidate solution.

All the values of a structure represent the neural network
characteristics that uniquely define a candidate solution in the space
of possible solutions. The Neuralyst Genetic Supervisor evolves
successor populations, or generations, from a limited population of

92 7.2 Operation of the Genetic Supervisor

 February 21, 1995

initial candidate solutions. It does this by treating the inclusion or
exclusion of each column of data in the full Input column set as
features; the number of layers and the number of neurons per layers
as features; and the control parameters of each neural network as
features.

These features are then varied in each new generation with the
resulting structure evaluated in terms of neural network fitness. Each
structure in the generation is evaluated and judged by either the
lowest RMS Error achieved after a fixed number of epochs or by the
number of epochs taken to achieve a minimum point in RMS Error.
These two measures represent neural networks that train to minimal
error or neural networks which train with minimal epochs. These
criteria can be applied to the set of training cases or the set of test
cases.

If the structure representing a neural network successfully meets the
fitness criteria selected, then the values of its features will be retained
and bred with other structures. For each generation, the Genetic
Supervisor generates a population of structures in one of two ways.
All the structures of an initial generation and a certain number of
structures in subsequent generations are created with features set to
random values constrained within specified limits. Subsequent
generations are created by cross-breeding the strings of successful
structures or occasional mutations of randomly selected features of
successful structures. Some or many of the weakest structures may
be culled, these are replaced with new structures.

Through this evolution-like process, an optimal neural network can
be developed. Note, however, that this process requires the training
of many versions of the neural network to determine an optimal one;
for neural network models that have large network configurations or
have large data sets this can be a lengthy process — but so can
biological evolution!

7.3 Structure Strings and Features

Each candidate solution is represented by a structure composed of
three strings. The strings represent the selection of Input columns,

7.3 Structure Strings and Features 93

 October 17, 1994

the neural network configuration, and the neural network
parameters.

7.3.1 Input Column Selection

Each Input column that is selected as part of a neural network model
is included because the user believes that the data is correlated,
positively or negatively, to the desired output. However, the data may
or may not be in fact useful in predicting the output data. Further,
even if useful, the data may be redundant with respect to other data
already present. Thus the Genetic Supervisor treats each column of
data as an individual candidate for exclusion or inclusion.

Only the set of Input columns is considered for optimization as it is
presumed that a specified Target column and its corresponding output
column are always a necessary part of the model. In the few cases
where targets and outputs are redundant, then you will need to
restrict the targets and outputs for best performance.

The Input column set is represented internally by a string of features
which specifies the exclusion or inclusion of the Input columns for the
structure. There is a feature for every possible column that can be
included or excluded. There are two possible values for each feature,
inclusion or exclusion. The user may select a nominal percentage from
1 to 100% which represents the average rate of inclusion. If the user
wants to force all data to be included, then the user can set 100%. The
default setting is 75%.

A percentage less than 100% does not mean that 100% of the Input
columns will never be included; it means that achieving 100%
inclusion will require cross-breeding and mutation to reach that level.
Similarly, specifying 100% does not mean that there will never be
Input column sets that are less than 100%; it means that achieving
less than 100% inclusion will occur through mutation and subsequent
cross-breeding.

7.3.2 Neural Network Configuration

The first and last layer of each neural network is automatically
determined by the number of inputs and outputs defined by the
candidate solution representing a neural network model. The count
of included values in the Input column string represents the number

94 7.3 Structure Strings and Features

 October 17, 1994

of inputs. The number of outputs remains constant and is determined
by the base neural network model. Within those constraints, the
neural network can have from two to six layers and a wide range of
variations in number of neurons per layer.

The neural network configuration is represented by a five feature
string, where the first feature represents the total number of layers
for the neural network and each subsequent feature represents the
number of neurons in the corresponding hidden layer. An implicit rule
is that if a lower layer feature has a value of zero neurons, then higher
layer features must also be zero. The user can constrain the maximum
number of layers and the maximum number of neurons per layer. The
default maximum settings are 4 layers, that is an input layer, 2 hidden
layers, and an output layer; with 30 neurons in the first hidden layer
and 10 neurons in the second hidden layer.

7.3.3 Neural Network Parameters

The training behavior of a neural network is controlled predominantly
by the user settable parameters for Learning Rate, Momentum, and
Input Noise. The Learning Rate applies a greater or lesser amount of
correction as a result of the error derived from a given case. The
Momentum averages the current error to a greater or lesser extent
with previous errors. The Input Noise factor causes the data to be
perturbed from a slight extent to none to simulate real world noise or
perturbations. These settings can affect the rate of training and the
robustness of the neural network on test cases. The neural network
training parameter features are represented by a three feature string,
where each feature of the string represents the value of a particular
parameter. The Learning Rate and Momentum can vary from almost
zero to one, while the Input Noise can vary from 0 to 0.1. The user can
constrain the minimum value of Learning Rate, the maximum value
of Momentum, and the maximum value of Input Noise. The default
values are a minimum of 0.5 for Learning Rate, a maximum of 1 for
Momentum, and a maximum of 0.03 for Input Noise.

7.3 Structure Strings and Features 95

 October 17, 1994

7.4 Population Management

There are two controls which determine the management of structure
population. The first is total population Pool Size. The second is
population replacement Pool Mode.

7.4.1 Population Pool Size

The population Pool Size controls the number of structures created or
evolved in each generation. The number of structures remains
constant, but the management of the structures is controlled by the
population Pool Mode control.

Setting a large population pool provides a richer number of structures
to test and evaluate to generate an optimal neural network. However,
large pools will take greater amounts of time to test and therefore
search. Setting a small pool has the reverse effect, each generation
completes more quickly, but the pool is sparser and may take a longer
amount of time to reach an optimal network.

Current research indicates that if processing resources are limited,
corresponding to limited processing time, then the best strategy is to
select a limited pool of 3-5 structures and to weed out the weakest
structure at each generation. Conversely, current research also seems
to indicate that if processing resources are unlimited, corresponding
to unlimited processing time, then the best strategy is to pick as large
a pool as possible. The default population Pool Size is set to 3.

7.4.2 Population Management Mode

The population Pool Mode control is a switch which sets one of three
modes: Closed Pool, Immigration, or Emigration. These three modes
represent different population replacement strategies from
generation to generation.

With Closed Pool set, then the existing population pool will be evolved
with no new structures ever introduced except through cross-breeding
and mutation. With Immigration set, the population pool will be
evolved and each generation entirely new structures will replace the
weakest structures of the current pool with the remaining structures
being cross-bred and mutated. With Emigration set, each generation

96 7.4 Population Management

 October 17, 1994

the best members of a current pool will be emigrated to an entirely
new population and cross-bred with the new population.

Closed Pool is similar to inbreeding in that weak structures are
perpetuated through the transfer of their strings. For very small pools
this is probably not useful; but for large pools, this may work fine.
Immigration corresponds to the most versatile population
management mode in that weak structures are continuously culled.
It should work well for small or large pools. Emigration may be best
for small pools, as it allows new structures to be tested rapidly and
compared to the best current structures. In the case of large pools,
emigration may also work well, but the characteristics of the best
structures may be rapidly diluted. The default population
management Pool Mode is Immigration.

7.5 Genetic Operators

Each time a population has been fully evaluated, each structure is
ranked by its fitness. The structures are then evolved to generate a
new population with each structure deriving its features from the
previous generation such that the most fit structures of the previous
generation have a higher chance of passing on their features in
proportion to their ranking.

There are two genetic operations the user can control to determine
the mechanism for passing features to the succeeding generation.
These genetic operators are cross-breeding and mutation.

7.5.1 Cross-breeding

The primary genetic operator is cross-breeding which is determined
by the Crossovers setting. Crossovers determines the frequency of
intermingling of features on the same string to create new structures.
Thus a setting of 1 means that two strings are crossed over at one
point; a setting of 2 means that two strings are crossed over at two
points, etc. The maximum setting for crossover frequency is 10.

As an example of cross-breeding, if Input columns A, B, C, and D, are
selected for the base neural network model; then the string

7.5 Genetic Operators 97

 October 17, 1994

X = <1,0,1,1> means that only Input columns A, C, and D, are
included in this structure. If a second string, Y = <0,1,1,0>, from
another structure is cross-bred with the first string, such that X is
read first then crossed over at the mid-point to Y, then the resulting
string for a new structure would be <1,0,1,0>, representing Input
columns A and C.

Note that only the Input column string will actually be likely to see a
high frequency of crossovers as the neural network configuration and
neural network parameter strings are too short to intermingle more
than once or twice. The default setting for Crossovers is 1.

7.5.2 Mutation

The secondary genetic operator for creating new structures is
mutation. With mutation, structures and features are chosen at
random, then randomly changed to new values. The Mutation Rate
parameter sets the percentage of structures which will undergo a
mutation rather than a crossover to create the new population.

As an example of mutation, if Input columns A, B, C, and D, are
selected for the base neural network model; then the string <1,0,1,1>
means that only Input columns A, C, and D, are included in this
structure. If mutation is selected for this structure, and the third
feature is mutated, then the new string would be <1,0,0,1>,
representing Input columns A and D.

Mutations and cross-breeding are never mixed. A structure is either
cross-bred or mutated. The maximum setting for Mutation Rate is
100%. The default setting for Mutation Rate is 10%.

7.6 Fitness Criteria

The evaluation of each structure is based on training or testing while
comparing the best RMS Error level achieved or the least number of
epochs. There are four modes which can be set: Train Epochs, Train
Error, Test Epochs, and Test Error.

Train Error finds the structure with the least RMS Error when
training each candidate solution up to the number of epochs specified

98 7.6 Fitness Criteria

 February 21, 1995

in the Fitness Limit; it operates on training data only. Train Epochs
finds the structure with the least epochs to achieve the RMS Error
level set in Fitness Limit; it operates on training data only.

Test Error finds the structure with the least RMS Error in the test
set data when training each candidate solution up to the number of
epochs specified in the Fitness Limit; it operates on training data and
testing data. Test Epochs finds the structure with the least epochs to
achieve the RMS Error level of the test set data as set in Fitness Limit;
it operates on training data and testing data.

The default Fitness Criteria mode is Train Error with Fitness Limit
set to 100 epochs. This will optimize RMS Error while training each
candidate solution to an epoch limit of 100.

7.7 Genetic Supervisor Tutorial

In Chapter 5, we trained a neural network to predict the possible
investment potential of a NYSE stock, Ametek. We will now use that
example to show you how to use the Genetic Supervisor.

Let’s recap the example: ���������� {������} contains fundamental
stock data. The data is primarily organized on a per share basis. These
are: sales revenue per share (Sls/Sh), cash flow per share (CF/Sh),
earnings per share (Ern/Sh), dividends per share (Div/Sh), capital
spending per share (Cap$/Sh), book value per share (BV/Sh), average
price to earnings ratio for the year (Avg. P/E), relative price to
earnings ration for the year compared to the overall market (Rel P/E),
dividend yield (Div %), and the average price per share for the year
(Avg $/Sh).

First set up the example in the same way as you did previously.

To run this example:

1. Init Working Area — starting at V1

2. Set Rows — 29 through 48, 1 Row/Pattern, 1 Row/Shift

3. Add Input Columns — C through L

7.7 Genetic Supervisor Tutorial 99

 October 17, 1994

4. Add Target Columns — N and O

5. Add Output Columns — Q and R

6. Set Mode Flag Column — T

7. Set Mode Rows — 48, Set Symbol Row

8. Set Network Size — 3 Layers, 6 Hidden Neurons

9. Set Network Parameters — Epochs per Update to 10

At this point the neural network configuration is set exactly as it was
the first time. Now we will allow Neuralyst to develop a more optimal
neural network using genetic optimization technology. Select the
Set Genetic Parameters command from the Neural menu. This
will cause the Genetic Parameters dialog box to appear.

The various fields have default values which are good starting points
for genetic optimization. With the exception of Pool Size, we will leave
them set to their defaults for this example, but you should review the
description of the parameters in Section 8.2.7 and experiment with
their functions. For now, change the Pool Size setting to 10. Confirm
OK to accept the settings. This will result in a message asking you to
confirm that you want to initialize the Genetic Supervisor state.
Confirm OK. The Genetic Supervisor is now ready to run.

Figure 7-1 Genetic Parameters Dialog Box

100 7.7 Genetic Supervisor Tutorial

 October 17, 1994

Select the Run Genetic Supervisor command from the Neural
menu. This will cause a dialog box to appear with an entry field to
limit the generation count.

The Genetic Supervisor will stop at the Generation Count which
matches the setting. The default setting is Generation Count 10.
Confirm OK to accept the settings. The Genetic Supervisor will now
begin training and evaluating multiple neural network configurations
to find the one which can provide the least RMS Error for a given
number of training epochs. Note that this is only one evaluation
condition that is possible, there are three others which emphasize the
fewest training epochs for a given RMS Error and the same two
conditions but applied to the testing set rather than the training set.

The Genetic Supervisor will report the Generation Count, the
Structure Count, and the Least RMS Error or Least Epochs for the
most recent completed generation. This will continue for several
minutes until the Generation Count reaches the limit set in the
Run Genetic Supervisor dialog box. At this time, the best structure
identified in the current generation, after 10 generations of
optimization, will be reported in a status display dialog box.

Figure 7-2 Genetic Trainer Dialog Box

7.7 Genetic Supervisor Tutorial 101

 October 17, 1994

You have the option of retrieving the structure that is displayed or
not doing so. If you chose not to retrieve the structure, you could
resume the Genetic Supervisor at the stopped point by executing
Run Genetic Supervisor again and increasing the generation limit
to a higher Generation Count. This would proceed with additional
generations of genetic optimization up to the new limit. At stopping
points, you can also change the Pool Mode, Genetic Operators, or
Fitness Criteria, without forcing a reinitialization of the Genetic
Supervisor. However, changing most neural network configuration
settings or the structure definitions in the Genetic Parameters dialog
box would invalidate the optimization done to that point and require
a reinitialization.

In this case, go ahead and confirm the retrieval with Retrieve. This
will cause the structure that was shown to you to overwrite the
Neuralyst Working Area with settings that duplicate the structure.
The worksheet now contains a better optimized neural network. The
settings which define the more optimal neural network are saved, but
not the connection weights. So to try out the new neural network
configuration, train and run the network as before by performing a
Train Network command and then a Run/Predict with Network.

Figure 7-3 Best Structure Dialog Box

102 7.7 Genetic Supervisor Tutorial

 October 17, 1994

7.8 Operating Techniques

The Neuralyst Genetic Supervisor is a powerful tool, but as mentioned
before, it can require lengthy optimization runs to achieve the best
results. There are some techniques that are worth following when
operating the Genetic Supervisor to get the most out of it.

When using a Fitness Criteria of Train Epochs or Test Epochs, which
means that epoch count is optimized in reference to a set RMS Error
level, not all neural network configurations will be able to achieve the
set RMS Error level. These neural networks will continue training
unless stopped by some other means. The external effect is that the
Genetic Supervisor becomes “stuck” on a single structure. Remember
that only the parameters specified in the Genetic Parameters dialog
box are varied by the Genetic Supervisor, the remaining parameters
that are settable in the Network Parameters and Enhanced
Parameters dialog box are effective where they make sense. In
particular, the three training cutoffs of Epoch Limit, Time Limit, and
Error Limit are effective even under the Genetic Supervisor.
Generally, it is best to set a Time Limit, with a value approximately
one and a half to two times the amount of time that a trial run takes
to achieve the set RMS level.

When using the Genetic Supervisor on a neural network model that
has relatively few Input columns with a small Pool Size setting and
an Inclusion Rate of notably less than 1, it is often possible for an
initial generation to be created where no structure has all the Input
columns specified, or where all Input columns are specified but the
other structure characteristics cause the candidate solution to be
culled. As a result, it can take many generations for cross-breeding or
mutation to bring the Input column set back up to a full count for
consideration. Under these conditions it is best to set Inclusion Rate
to 1 or almost 1 and allow mutation to eliminate columns or to increase
the Pool Size so the full Input column set is more likely to receive
immediate evaluation.

When observing the Genetic Supervisor, it often happens the reported
Least RMS Error or Least Epochs will increase in a current generation
from the preceding one. These variations are not unusual and occur
because the weight sets are initialized randomly. This may result in
the best structures having slight variations in their reported results

7.8 Operating Techniques 103

 February 21, 1995

from generation to generation even though a single structure remains
the best candidate solution.

Also, while observing the Genetic Supervisor, it often happens that
the reported Least RMS Error or Least Epochs will attain an effective
plateau after a few generations, subject to the minor variations
mentioned previously. It is possible that this means that the Genetic
Supervisor has attained an optimal solution. However, it also happens
that after attaining a plateau for many generations, a sudden
mutation can cause a marked improvement and a new, improved
performance level. There is no clear way to predict the difference. This
is very similar to biological evolution.

Generally, if the Genetic Supervisor has attained a plateau for a
number of generations, the majority of structures will have become
bred to be like the best structure. The propagation of the best
structure in this fashion will generally take fewer generations than
the set Pool Size if the Pool Mode is set to Closed Pool or Immigration.
That is, if the Pool Size is set to 10, then the majority of structures
will become similar in fewer than 10 generations. At this point, the
Genetic Supervisor will attain better results only if Immigration is set
or if there is a mutation. When this happens, it is possible to stop the
Genetic Supervisor and change the settings of the Pool Mode, Genetic
Operators or Fitness Criteria; then restart the Genetic Supervisor
with the effect of stressing and evolving the population in a different
way, with possibly beneficial results.

As a final suggestion, the Genetic Supervisor can deliver very useful
results even with short runs. This can be achieved by setting the
Genetic Supervisor to a large pool with only one or two iterations. This
is an automated way to test a random space of neural network
configurations for the best performer. If the neural network is
moderately sized, the selected neural network will often be close to an
optimal network.

104 7.8 Operating Techniques

 October 17, 1994

	Chapter 5 Learning More About Neuralyst
	5.1 Parity Generator
	5.2 Paper-Rock-Scissors Game
	5.3 Sine Wave
	5.4 Criminal Mugbook
	5.5 Credit Rater
	5.6 Marketing Analyzer
	5.7 Fundamental Stock Analysis
	5.8 Technical Stock Analysis
	5.9 Shape Recognizer

	Chapter 6 Advanced Neuralyst Topics
	6.1 Input and Output Value Ranges
	6.2 Setting Network Size
	6.3 Learning Rate, Momentum, and Training Tolerance
	6.4 Learning, Weights, and Multiple Solutions
	6.5 Some Causes of Poor Results
	6.6 Experimenting with Enhanced Neural Networks
	6.7 Excel Charts and Neuralyst

	Chapter 7 Genetic Optimization of Neural Networks
	7.1 Genetic Technology
	7.2 Operation of the Genetic Supervisor
	7.3 Structure Strings and Features
	7.4 Population Management
	7.5 Genetic Operators
	7.6 Fitness Criteria
	7.7 Genetic Supervisor Tutorial
	7.8 Operating Techniques

